3.222 \(\int \frac{(a+a \sin (c+d x))^3}{(e \cos (c+d x))^{9/2}} \, dx\)

Optimal. Leaf size=127 \[ -\frac{2 a^6 \sqrt{e \cos (c+d x)}}{21 d e^5 \left (a^3-a^3 \sin (c+d x)\right )}+\frac{4 a^5 \sqrt{e \cos (c+d x)}}{7 d e^5 (a-a \sin (c+d x))^2}-\frac{2 a^3 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 d e^4 \sqrt{e \cos (c+d x)}} \]

[Out]

(-2*a^3*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(21*d*e^4*Sqrt[e*Cos[c + d*x]]) + (4*a^5*Sqrt[e*Cos[c +
d*x]])/(7*d*e^5*(a - a*Sin[c + d*x])^2) - (2*a^6*Sqrt[e*Cos[c + d*x]])/(21*d*e^5*(a^3 - a^3*Sin[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.197608, antiderivative size = 127, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {2670, 2680, 2683, 2642, 2641} \[ -\frac{2 a^6 \sqrt{e \cos (c+d x)}}{21 d e^5 \left (a^3-a^3 \sin (c+d x)\right )}+\frac{4 a^5 \sqrt{e \cos (c+d x)}}{7 d e^5 (a-a \sin (c+d x))^2}-\frac{2 a^3 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 d e^4 \sqrt{e \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[c + d*x])^3/(e*Cos[c + d*x])^(9/2),x]

[Out]

(-2*a^3*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(21*d*e^4*Sqrt[e*Cos[c + d*x]]) + (4*a^5*Sqrt[e*Cos[c +
d*x]])/(7*d*e^5*(a - a*Sin[c + d*x])^2) - (2*a^6*Sqrt[e*Cos[c + d*x]])/(21*d*e^5*(a^3 - a^3*Sin[c + d*x]))

Rule 2670

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[(a/g)^
(2*m), Int[(g*Cos[e + f*x])^(2*m + p)/(a - b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 -
 b^2, 0] && IntegerQ[m] && LtQ[p, -1] && GeQ[2*m + p, 0]

Rule 2680

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(2*g*(
g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(2*m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(2*m +
 p + 1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, g}, x] && Eq
Q[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] && NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*
p]

Rule 2683

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*(g*Cos[e
 + f*x])^(p + 1))/(a*f*g*(p - 1)*(a + b*Sin[e + f*x])), x] + Dist[p/(a*(p - 1)), Int[(g*Cos[e + f*x])^p, x], x
] /; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] &&  !GeQ[p, 1] && IntegerQ[2*p]

Rule 2642

Int[1/Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[c + d*x]]/Sqrt[b*Sin[c + d*x]], Int[1/Sqr
t[Sin[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+a \sin (c+d x))^3}{(e \cos (c+d x))^{9/2}} \, dx &=\frac{a^6 \int \frac{(e \cos (c+d x))^{3/2}}{(a-a \sin (c+d x))^3} \, dx}{e^6}\\ &=\frac{4 a^5 \sqrt{e \cos (c+d x)}}{7 d e^5 (a-a \sin (c+d x))^2}-\frac{a^4 \int \frac{1}{\sqrt{e \cos (c+d x)} (a-a \sin (c+d x))} \, dx}{7 e^4}\\ &=\frac{4 a^5 \sqrt{e \cos (c+d x)}}{7 d e^5 (a-a \sin (c+d x))^2}-\frac{2 a^4 \sqrt{e \cos (c+d x)}}{21 d e^5 (a-a \sin (c+d x))}-\frac{a^3 \int \frac{1}{\sqrt{e \cos (c+d x)}} \, dx}{21 e^4}\\ &=\frac{4 a^5 \sqrt{e \cos (c+d x)}}{7 d e^5 (a-a \sin (c+d x))^2}-\frac{2 a^4 \sqrt{e \cos (c+d x)}}{21 d e^5 (a-a \sin (c+d x))}-\frac{\left (a^3 \sqrt{\cos (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{21 e^4 \sqrt{e \cos (c+d x)}}\\ &=-\frac{2 a^3 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 d e^4 \sqrt{e \cos (c+d x)}}+\frac{4 a^5 \sqrt{e \cos (c+d x)}}{7 d e^5 (a-a \sin (c+d x))^2}-\frac{2 a^4 \sqrt{e \cos (c+d x)}}{21 d e^5 (a-a \sin (c+d x))}\\ \end{align*}

Mathematica [C]  time = 0.0829027, size = 66, normalized size = 0.52 \[ \frac{4 \sqrt [4]{2} a^3 (\sin (c+d x)+1)^{7/4} \, _2F_1\left (-\frac{7}{4},-\frac{1}{4};-\frac{3}{4};\frac{1}{2} (1-\sin (c+d x))\right )}{7 d e (e \cos (c+d x))^{7/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sin[c + d*x])^3/(e*Cos[c + d*x])^(9/2),x]

[Out]

(4*2^(1/4)*a^3*Hypergeometric2F1[-7/4, -1/4, -3/4, (1 - Sin[c + d*x])/2]*(1 + Sin[c + d*x])^(7/4))/(7*d*e*(e*C
os[c + d*x])^(7/2))

________________________________________________________________________________________

Maple [B]  time = 1.273, size = 401, normalized size = 3.2 \begin{align*}{\frac{2\,{a}^{3}}{21\,{e}^{4}d} \left ( 8\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}-12\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+8\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}\cos \left ( 1/2\,dx+c/2 \right ) +6\,\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-8\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}\cos \left ( 1/2\,dx+c/2 \right ) +28\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{5}-\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) -22\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) -28\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}-5\,\sin \left ( 1/2\,dx+c/2 \right ) \right ) \left ( 8\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}-12\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+6\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) ^{-1} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}e+e}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(d*x+c))^3/(e*cos(d*x+c))^(9/2),x)

[Out]

2/21/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*
d*x+1/2*c)^2*e+e)^(1/2)/e^4*(8*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d
*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^6-12*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)
)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^4+8*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+6*(2*sin(1/2
*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2
-8*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+28*sin(1/2*d*x+1/2*c)^5-(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-22*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-28*sin(1/2
*d*x+1/2*c)^3-5*sin(1/2*d*x+1/2*c))*a^3/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sin \left (d x + c\right ) + a\right )}^{3}}{\left (e \cos \left (d x + c\right )\right )^{\frac{9}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^3/(e*cos(d*x+c))^(9/2),x, algorithm="maxima")

[Out]

integrate((a*sin(d*x + c) + a)^3/(e*cos(d*x + c))^(9/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (3 \, a^{3} \cos \left (d x + c\right )^{2} - 4 \, a^{3} +{\left (a^{3} \cos \left (d x + c\right )^{2} - 4 \, a^{3}\right )} \sin \left (d x + c\right )\right )} \sqrt{e \cos \left (d x + c\right )}}{e^{5} \cos \left (d x + c\right )^{5}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^3/(e*cos(d*x+c))^(9/2),x, algorithm="fricas")

[Out]

integral(-(3*a^3*cos(d*x + c)^2 - 4*a^3 + (a^3*cos(d*x + c)^2 - 4*a^3)*sin(d*x + c))*sqrt(e*cos(d*x + c))/(e^5
*cos(d*x + c)^5), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))**3/(e*cos(d*x+c))**(9/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sin \left (d x + c\right ) + a\right )}^{3}}{\left (e \cos \left (d x + c\right )\right )^{\frac{9}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(d*x+c))^3/(e*cos(d*x+c))^(9/2),x, algorithm="giac")

[Out]

integrate((a*sin(d*x + c) + a)^3/(e*cos(d*x + c))^(9/2), x)